Site icon Education Gyan

CTET Exam 2022: परीक्षा मे बार-बार पूछे जाते हैं ‘गणित’ के ये प्रश्न अभी पढ़े!

CTET Math Questions: दिसंबर माह में आयोजित होने वाली सीटेट परीक्षा के लिए आवेदन की प्रक्रिया वर्तमान में जारी है, वे उम्मीदवार जो इस परीक्षा में सम्मिलित होना चाहते हैं। 24 नवंबर से पहले बोर्ड की ऑफिशल वेबसाइट पर जाकर अपना रजिस्ट्रेशन करवा सकते हैं। यहां पर हम नियमित रूप से परीक्षा पैटर्न पर आधारित शेयर करते आ रहे है। इसी कड़ी में आज हम गणित की कुछ ऐसे सवाल आपके लिए लेकर आए हैं, जो की परीक्षा में बार-बार पूछे जाते हैं। परीक्षा में शामिल होने से पहले एक बार इन प्रश्नो का अध्ययन अवश्य कर लेना चाहिए।

ये भी पढे:-CTET 2022: सीटेट परीक्षा मे उच्चतम अंक दिलाएंगे गणित पेडागोजी के ये सवाल, डाले एक नजर!

परीक्षा मे शामिल होने से पहले जरूर पढ़े गणित के ये सवाल—Math Important Questions For CTET Exam 2022

Q. रोमन अंकों का उपयोग आमतौर पर हिन्दू- अरबी अंकों जैसी संख्याओं के लेखन में क्यों नहीं किया जाता ?/Why are Roman numerals not commonly used in writing numbers like the Hindu-Arabic numerals? 

(1) बच्चे अंग्रेजी वर्णमाला और रोमन अंकों में भ्रमित हो जाते हैं/Children get confused with the English alphabet and Roman numerals.

(2) रोमन अंक स्थानीय मान का नियोजन नहीं करते हैं, इसलिए इन अंकों का उपयोग करके गणना करना मुश्किल होता है /The Roman numerals do not employ place value, so calculations are difficult to perform using these numerals 

(3) रोमन अंकों को याद करना मुश्किल है।/Roman numerals are difficult to remember

(4) रोमन अंकों का उपयोग करके संख्याओं को बनाना एक जटिल कार्य है/The formation of numbers using Roman numerals is a complicated task

Ans- 2 

Q. पाइथागोरस प्रमेय को सिखाने के लिए एक शिक्षक ने एक शीट वितरित की है जिस पर समकोण वाले चार त्रिभुजों को खींचा गया था और बच्चे को त्रिभुज की भुजाओं के बीच सम्बन्ध खोजने के लिए कहा जाता है। उपरोक्त परिस्थिति में शिक्षक ने प्रयोग की/To teach the Pythagoras theorem, a teacher has distributed a sheet on which four right-angled triangles were drawn and asks the child to find the relationship between the sides of a triangle. In the above situation, the teacher used

(1) प्रयोगशाला विधि/laboratory method 

(2) आगमन विधि/inductive method 

(3) निगमन विधि/deductive method

(4) व्याख्यान विधि/lecture method

Ans- 2 

Q. दो दशमलव संख्याओं के योग की संकल्पना को पढ़ाने के लिए निम्नलिखित में से शिक्षण- अधिगम का कौन-सा साधन सर्वाधिक उपयुक्त है?/Which of the following teaching-learning resources would be the most appropriate to teach the concept of addition of two decimal numbers?

(1) जियोबोर्ड/Geoboard

(2) मोती और माला/Beads and string

(3) ग्राफ पेपर/Graph paper 

(4) गिनतारा/Abacus

Ans- 3 

Q. किसी छात्र को नीचे दी गई संख्याओं को पढ़ने के लिए कहा गया

306, 408, 4008, 4010

उसने इन्हें इस प्रकार पढ़ा तीस छः, चालीस आठ, चार सौ आठ, चालीस दस पढ़ने में त्रुटि का कारण है कि/ A student was asked to read the following numbers 306, 408, 4008, 4010. He read as follows Thirty six, forty eight, four hundred eight, forty ten The reason for error in reading is that  

(1) छात्र को गणित की कक्षा अच्छी नहीं लगती और कक्षा उबाऊ (कष्टदायक) लगती है/the student does not like Maths class and finds the class boring

(2) छात्र ने स्थानीय मान की संकल्पना तो समझ ली है परन्तु उसका उपयोग नहीं जानता /the student has understood the concept of place value but does not know how to use it

(3) छात्र गणित का अध्ययन करने के लिए उपयुक्त नहीं है/the student is not fit for study of Maths 

(4) छात्र स्थानीय मान की संकल्पना को नहीं समझता है और उसे केवल दो अंकीय संख्याओं को पढ़ना आसान लगता है।/the student is not able to understand the concept of place value and feels comfortable using two digit numbers only

Ans- 4 

Q. राष्ट्रीय पाठ्यचर्या की रूपरेखा (एन.सी.एफ.) 2005 की अनुशंसा के अनुसार प्राथमिक विद्यालयों का गणित पाठ्यक्रम /As per the recommendation of NCF 2005, primary school mathematics curriculum should

(1) छात्रों को प्रगामी गणित के लिए तैयार करने वाला होना चाहिए /prepare children for advanced Mathematics.

(2) छात्रों के प्रतिदिन के अनुभवों से सम्बन्धित होना चाहिए/relate to children’s everyday experiences.

(3) कार्यविधिक ज्ञान पर केन्द्रित होना चाहिए/focus on procedural knowledge.  

(4) गणितीय संकल्पनाओं में कठोरता देने वाला होना चाहिए/provide rigour in mathematical concepts.

Ans- 2 

Q. यदि एक शिक्षार्थी को संख्याओं और परिकलन में समस्या हो रही है, तो उसमें असमर्थता हो सकती है, जिसका नाम है/If a learner is having problem with numbers porn and calculations she/he may be having disability known as

(1) लेखन-अक्षमता (डिस्याफिया)/dysgraphia

(2) गणितीय-अक्षमता (डिस्कैल्कुलिया)/dyscalculia 

(3) दृश्य-स्थानिक संगठन में असमर्थता/visual-spatial organization disability

(4) पठन-अक्षमता (डिस्लेक्सिया)/dyslexia

Ans- 2 

Q. निम्नलिखित में से कौन-सा कथन “सकंल्पना मानचित्र के बारे में सत्य नहीं है?/Which one of the following statements is not true about ‘concept maps’? 

(1) संकल्पना मानचित्र नए शिक्षण को पूर्व ज्ञान से जोड़ने में सहायक हैं /Concept maps help in linking prior knowledge to new instruction.

(2) संकल्पना मानचित्र अन्तःसम्बन्धित अवधारणाओं और उन्हें जोड़ने वाले लिंक का संग्रह प्रस्तुत करते हैं।/Concept maps represent a collection of interconnected concepts and links connecting them

(3) संकल्पना मानचित्र केवल शिक्षकों द्वारा बनाया जाना चाहिए/Concept maps should be constructed by teacher only  

(4) संकल्पना मानचित्र प्रकृति में पदानुक्रमित हैं।/Concept maps are hierarchical in nature

Ans- 3 

Q. गणित सीखने के सम्बन्ध में निम्नलिखित में से कौन-सा कथन सत्य है?/Which one of the following statements is true with respect to mathematics learning?

(1) गणित केवल कठोर अभ्यास से सीखा जा सकता है/Mathematics can only be learnt by rigorous practice

(2) गणित सीखने के लिए एक कठिन विषय है /Mathematics is a difficult subject to learn

(3) आमतौर पर लड़कियाँ गणित में कमजोर होती हैं/Generally girls are weaker in mathematics

(4) हर कोई गणित सीख सकता है।/Everybody can learn mathematics

Ans- 4

Q. राष्ट्रीय पाठ्यचर्या की रूपरेखा (एन सी एफ), 2005 के अनुसार प्राथमिक स्तर पर गणित शिक्षण का उद्देश्य निम्नलिखित में से कौन-सा नहीं है?/Which of the following is not an objective of teaching Mathematics at primary level according to NCF, 2005? 

(1) गणित में उच्चतर और अमूर्त पढ़ाई की तैयारी कराना /Preparing for learning higher and abstract Mathematics

(2) गणित को बच्चे की जिन्दगी के अनुभवों का भाग बनाना/Making Mathematics part of child’s life experiences 

(3) समस्या समाधान और समस्या प्रस्तुत करने के कौशल को प्रोत्साहित करना/Promoting problem-solving and problem-posing skills 

(4) तर्कसंगत विचारों को प्रोत्साहित करना/Promoting logical thinking

Ans- 1 

इन्हे भी पढे:-

CTET 2022-23: RET Act 2009 से जुड़े ये सवाल दिलाएंगे आपको परीक्षा में उत्तम परिणाम अभी पढ़े!

CTET Exam 2022: परीक्षा मे अधिकतर पूछे जाने वाले ‘समावेशी शिक्षा’ से जुड़े जरूरी सवाल, यहां पढ़ें

उपरोक्त आर्टिकल में हमने ‘गणित’ (CTET Math Questions) से जुड़े महत्वपूर्ण सवालों का अध्ययन किया। केंद्रीय शिक्षक पात्रता परीक्षा (CTET) से जुड़ी नवीनतम अपडेट और प्रैक्टिस सेट प्राप्त करने के लिए आप हमारे टेलीग्राम चैनल के सदस्य बने, जॉइन लिंक नीचे दी गई है

Exit mobile version